## M463 Homework 6

## Enrique Areyan <br> June 25, 2013

(2.1) \#6 A man fires 8 shots at a target. Assume that the shots are independent, and each shot hits the bull's eye with probability 0.7.
a) What is the chance that he hits the bull's eye exactly 4 times?

Solution: Since these are independent trials we can use the binomial distribution. Let $n=8$ be the number of trials. Call a success if the man hits the bull's eye with $P($ success $)=0.7$. Then, the probability that he hits the bull's eye exactly 4 times is given by:

$$
P(4 \text { successes in } 8 \text { trials })=\binom{8}{4} 0.7^{4} 0.3^{4}=0.1361367
$$

b) Given that he hit the bull's eye at least twice, what is the chance that he hit the bull's eye exactly 4 times?

Solution: This is a conditional probability. Hence,

$$
P(4 \text { successes in } 8 \text { trials } \mid \text { at least } 2 \text { successes })=\frac{P(4 \text { successes in } 8 \text { trials } \cap \text { at least } 2 \text { successes })}{P(\text { at least } 2 \text { successes })}
$$

But the intersection in the numerator is just the event of 4 successes in 8 trials, since if you have exactly 4 successes then certainly you had at least 2 . Hence,

$$
\frac{P(4 \text { successes in } 8 \text { trials } \cap \text { at least } 2 \text { successes })}{P(\text { at least } 2 \text { successes })}=\frac{P(4 \text { successes in } 8 \text { trials })}{P(\text { at least } 2 \text { successes })}
$$

The numerator was previously computed in part a). The denominator is easier calculated with the complement rule:
$P($ at least 2 successes $)=1-P($ zero OR one success in 8 trials $)=1-\binom{8}{0} 0.7^{0} 0.3^{8}-\binom{8}{1} 0.7^{1} 0.3^{7}=0.99870967$
Finally, the desired probability is:

$$
P(4 \text { successes in } 8 \text { trials } \mid \text { at least } 2 \text { successes })=\frac{0.1361367}{0.99870967}=0.13631259
$$

c) Given that the first two shots hit the bull's eye, what is the chance that he hits the bull's eye exactly 4 times in the 8 shoots?

Solution: Since two of the shoots were already made and shots are independent, we can think of this probability as the probability of hitting exactly 2 out of the remaining 6 shoots:
$P(4$ successes in 8 trials $\mid$ the first 2 were successes $)=P(2$ successes in 6 trials $)=\binom{6}{2} 0.7^{2} 0.3^{4}=0.59535$

